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PROBLEM OF OPTIMAL CONTROL BY THE NATURAL FREQUENCY OF 
OSCILLATIONS OF AN ORTHOTROPIC SHELL OF REVOLUTION 

AND ITS FINITE-DIMENSIONAL,APPROXIMATION* 

N.G. MEDVEDEV 

The questions of optimization in problems of oscillations in orthotropic shells of 
revolution of variable thickness are studied for the case when the thickness and 
radius of curvature of the shell generatrix are used as the controls. Restrictions 
are imposed on the principal oscillation eigenfrequency, thickness, internal volume 
and other parameters. It is shown that a solution of the problem exists and, that 
the problem can be approximated by a sequence of the finite-dimensional problems. 
Certain questions of the optimal control in the problem concerning the oscillations 
of plates of variable thickness with the thickness serving as the control, were 
studied in /l-44/. 

1. Basic assumptions. Let B be a rectangular region in 

RF Q = {(cp, z) IO < cp < 2n, 0 < z < L); H, = JJ',,,l (51) x w,,,l $4 x Wma (61) 

is a direct product of the Sobolev spaces /5/ of functions 2n -periodic in 'p, H, = {w = (u,v, 

w) I u, 0 E W,,,l (a w E w2,0z (Q)W%,l (4 a subspace of the space W,' (Q)with the norm W%' (0)). 
We denote by H the closure on the norm 

of a set of functions ~EH,, periodic in (p, infinitely differentiable 

L?--w<cp<m and satisfying the boundary conditions of the problem 
introduce the set 

(1.1) 

in the strip U.< z< 
in question /6/. We 

U = {t = (h, r) ( h E C (si), r E C3 IO, Ll, e, < h < e2. e3 < r < 4 (1.2) 

where ei are positive constants fitted with a topology generated by the product of strong top- 
ologies of the spaces C(Q) and C3[0,L]. We further define on H x H the familiesofbilinear 
symmetric forms a*(~', 0') and bc(o’, o “), depending on the parameter TV U: 

a,(o',o")=S {Ol [E 1~1'~1" + vZEl (~l’t2” + F~“F~‘) + Epe,‘ea” + (1.3) 

(1 - v~v~)?~~~E~“] + Dz [&Q’E~” + Y~,!?~ (~‘d’b + E~“Q,‘) + E2~,‘~,” $ 4 (1 - Y~Y.J GE+,‘Q”]} A15 d!d 

bt (a’, co”) = S ph (U/U” + vfvx + w’w”) Al’+ do; p = const > 0 
R 

(1.4) 
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Here ei', El" are the shell of revolution deformation components /7/ generated by the displace- 
ments of the middle surface o',u"EH and depending on the radius r(z)Ef?tO,L] of the gener- 
atrix, the coefficients D, and D,depend on the shell thickness h(z,cp)EC@), Et, vi, G are the 
moduli of elasticity, Poisson's ratios and the shear modulus respectively. In addition E,v, = 

EA* L is the length of the shell and p in the material density. We introduce the following 
assumptions: 

1) Ei,vi,G are positive constants while 1 vi 1 < 1, i = 1, 2; 
2) the conditions ei(a,r) = O(i = 1,2,...,6) imply at any t6~ U,o TV H , that 0 = 0. 

The assumption 1) holds for orthotropic materials, and 2) holds for the case when the shell 
shows no rigid displacements, i.e. it is clamped so that zero deformations implyzerodisplace- 
ments (see /6/ for more detail). 

As in /6/, we can show that when the assumptions 1 and 2 hold, the form a:(U',o")generat- 
es in H a scalar product and a norm equivalent to the norm (l.l), i.e. the following inequal- 
ities hold: 

mlt II~IIH~<u:(o,~<Mu IIoIIH~, V~EH. V&EC (1.5) 

where ml, and M,t are positive constants depending on t. It is also clear that the form 
bl(o’,w”) generates in H a scalar product and a norm equivalent to the norm of the space 

Hb = (Lz (Q)) *: 

m II CO II&, < bt b-b 4 <MS II o II&,, Vo E H, Vt E u; (1.6) 

m2, Ma = const > 0 

2. Problem of the eigenfrequencies and the forms of shell oscillations. We 
shall consider the following eigenvalue problem: 

u~(u,GJ') = hbt (o,o’), VU'E H (2.1) 

Taking into account the relations (1.5) and the compactness of the inclusion 

W%l(Q) x wzlG-4 x w,z(61)-+-(L,(Q))S 

we obtain, from the known results /8/, the following theorem. 

Theorem 1. Let the assumptions 1 and 2 hold. Then for any tE U the spectral problem 
(2.1) has a sequence of nonzero solutions O~EH corresponding to a sequence of eigenvalues 
hk such that ~,(w~,o) = hkbl(mkr~),V~E H,O< h, < h,< . . . . Moreover, 

h,=inf(sI @EH, 0#0, bt(o,oi)=O, l<i<k---i) (2.2) 

The problem (2.1) is connected with the determination of the eigenfrequencies and types of 
oscillation of the variable thickness, orthotropic shells of revolution, satisfying the certain 
clamping conditions which ensure that assumption 2 holds /6/. 

3. Infinite-dimensional problem of optimal control. It is clear that the funda- 
mental eigenfrequency A,, the corresponding modes of the oscillations w1 and the weight of 
the shell Pall depend on the parameter t = (h,r). Denoting these relations by hl,ot and P1 
and taking (2.2) into account, we obtain 

(3.1) 

We shall use t as a control parameter to obtain the minimum weight of the shell pt, so that 
the fundamental eigenfrequency h, does not fall below a given frequency h_ when the shell 
thickness hand radius r of the generatrix are bounded from above and below.. In this connec- 
tion, we introduce here the space 

V = C (3) x C3 IO, L] = {t = (h, r) I h E C (fi), r E 0 [O, L]} 

Let E be a reflexive Banach space such that EC V and the inclusion of Ein V is compact. 
In particular, we can choose E in the form 

E = W,,l(Q) x WP: (0, L) (PI> 2, ~a> 1) 

We define the admissible set of controls by the expression 
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Ua = {t = (h, r) I t E E, I/ t IIE < c, k_ r< k < k,, r_ < r < T+, (3.2) 

A_ < At, 9:1 (t, 0,) < 0, j _ 1, 2, . . ., 1); e,< h_< k+< et, e,< r_< r+< e4 

with (t,~)+(Pj(t, O) denoting the continuous mapping of C X g into li (with the topology gen- 
erated by the product of strong topologies of the spaces C(Q),C3[0,L] and H). Here C, k_, 
k+,r_,r+ are positive constants and et are the constants given by (1.2). 

The problem of optimal control is to find a function t, = (k,,r,) such, that 

We note that the inequalities $j(t,ol)<O restrict other parameters of the orthotropic shell 

of revolution, depending on the problem in question. For example, in the case when the mini- 
mum internal volume V, of the shell of revolution is restricted, we have 

(3.4) 

Lemma. The function t+ht (3.1) represents a continuous mapping from C, defined by 

(1.2), into R. 

Proof. Let t, = (h,, R,) be any element belonging to the sequence ~',[t~} = ((h,,r,,)} of ele- 

ments such that 
t, E U, t, - to in U (3.5) 

We introduce the following notation for n = 0, 1, 2, 

,2.(n) = h 
!rL’ 0, = Ofn, an (co’, d) = aln (co’, a”), bn(w’, (\I”) = btn (co’, 01) 

From (1.3), (1.4), (3.5) and (3.6) we have 

Ia,(e, 0) -00 (0, o) I <cn'IlellH? I b,(o> 0) - bo(e, ~)I<,-Jl"ll&~ 

Vo E Et, c,,' - 0 and c,"- 0 as n - m 

(3.6) 

(3.7) 

and the following inequalities follow from (1.5), (1.6) and (3.7): 

m,lloll~adan(O,w)dMl[j~llH*, V~EH, n-O,i,&...,m,, M,-con&>0 

Let o' be any element of H. Then, taking (1.6) and (3.8) into account, we have 

(3.8) 

Taking into account the relations (3.1), (3.6) and (3.9), we obtain 

II (0 llnP 
olo~H, o#O,- 

II w II& 
n-o,i,2,... 

and from the inequalities (1.6), (3.7) and (3.8) follows 

=* (% a) a0 (w, 0) 
b,, (0,~) -b,o <en, Vo=Qq ~~-0 as n-30 

(3.9) 

(3.10) 

(3.11) 

Now, from (3.10) and (3.11) it follows that h(")-kh(')as n-m, and this completes the proof 

of the lemma. 

Theorem 2. Let the assumptions 1 and 2 hold, and a non-empty set Ua be defined by the 

relation (3.2). Then a solution of the problem (3.3) exists. 

Proof. Let the sequence {t,,)~Sl = {(k,, r,,)}??zl be such that 

t, E Ua, lim Pt, = inf P, (3.12) 
n-m lEna 

By virtue of (3.2) we can eliminate, from the sequence {t,,}zl, a subsequence {t,,,}k such that 

1, E UO, t,-t* weakly in E (3.13) 
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Repeating the arguments similar to those used to prove the lemma, we can show that h(m) < Cl, 

II 6h Ilk < c2 (c,, 5 = const > 0) , and this implies, with the compactness of the inclusion of E 

into v and the lemma both taken into account, that a subsequence {h("), og, ht, rk}k, exists such 
that 

h(k) + h,,* in R (3.14) 

Ok-+ w* strongly in Hb (3.15) 

tk = (hk, rk) + @*, r*) = t* weakly in E (3.i6) 

hk-+h* strongly in C(a); rk'+ strongly in c3 [O, Ll (3.17) 
Remembering that t-p(t) is a continuous mapping of Pinto Rwe obtain, from (3.13) and (3.17), 

P,.= lim P,,= inf P,; h_<lh*<h+; r_<r* <r+ (3.18) 
k-m t=_ua 

From the relations (3.13) and (3.16) we obtain 

c > 2 ,/ tk i/E > (1 t* (IE (3.19) 

where C is a constant given by (3.2), and from (3.2), (3.13), (3.15), (3.16) we have 

0 > lim$j (tk, ok) = $j (t*, O*); j = 1, . . ., I 
k-m (3.20) 

Taking into account (3.12) and (3.14) we find that 1irnW) = h,,*>,h_ as k-too and this, to- 

gether with (3.18)- (3.20), implies that the function t, = t* = (h*,r*) is a solution of the 
problem (3.3). 

4. Approximate solution of the problem (3.3). Let {E,}~=l be a sequence of finite- 
dimensional subspaces in E. The finite-dimensional optimal control problem is to find the 
function t,,= (h,,, r,,) such, that 

Using the lemma, we can prove the statement (*). 

Theorem 3. Let the conditions of Theorem 2 hold, {E,} be a sequence of finite-dimensional 
subspaces in E satisfying the condition of limiting density 

lim inf 1) t--,yllE=O, Vyfz E 
n-m SE, 

(4.2) 

and let a sequence {Q,,}~&, exist such that q,,f? U$', q,,-t t, in E where Uao denotes the inside 
of U, and t, is the solution of the problem (3.3). Then n, exists such that when Vn,> n, , 
then the set E,, f-l Ua is non-empty, the problem (4.1) has a solution t,, = (&, 1;1) and 

lim Ptn=Pt,= inf P, 
n--r- LEUB 

We can separate from the sequence {tn}&,e a subsequence {t,,,)~=1, such, that t,+t, strongly in 
V. 

A tensor product of the spline spaces /9/ can be used as an example of the finite-dimen- 
sional subspaces &, satisfying the condition (4.2). We note that another approach which does 
not require that a sequence (gnn)k=, exists is available for constructing approximate solutions 
of the problem (3.3). As in /4/, we can also consider a dual optimal control problem, i.e., 
the problem of maximizing the fundamental oscillation eigenfrequency of a shell of revolution, 
with constraints imposed on its weight and other parameters. 
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